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Simplifying the mosaic description of DNA sequences
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By using the Jensen-Shannon divergence, genomic DNA can be divided into compositionally distinct do-
mains through a standard recursive segmentation procedure. Each domain, while significantly different from its
neighbors, may, however, share compositional similarity with one or more distant~non-neighboring! domains.
We thus obtain a coarse-grained description of the given DNA string in terms of a smaller set of distinct
domain labels. This yields aminimal domain description of a given DNA sequence, significantly reducing its
organizational complexity. This procedure gives a new means of evaluating genomic complexity as one ex-
amines organisms ranging from bacteria to human. The mosaic organization of DNA sequences could have
originated from theinsertion of fragments of one genome~the parasite! inside another~the host!, and we
present numerical experiments that are suggestive of this scenario.
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I. INTRODUCTION

One of the major goals in DNA sequence analysis is
gain an understanding of the overall organization of the
nome. Beyond identifying the manifestly functional regio
such as genes, promoters, repeats, etc., it has also be
interest to analyze the properties of the DNA string itse
One set of studies has been directed towards examining
nature of correlations between the bases. There are s
evidences for long-range correlations which give rise to1/f
spectra in genomic DNA@1–3#; this feature has been attrib
uted to the presence ofcomplex heterogeneitiesin nucleotide
sequences@3#. These result in hierarchical patterns in DN
the mosaic or ‘‘domain within domain’’ picture@4#. This
structure is most conveniently explored through segme
tion analysis based on information theoretic measures@4–7#,
although other schemes to uncover the correlation struc
over long scales, such as detrended fluctuation analys
DNA walks @8# or wavelet tranform technique@9# have also
been applied. There have been some attempts to decod
biological implications of such complexity@9–11#, but these
are incompletely understood as of now. On shorter len
scales there is a prominent three-base correlation in co
regions of DNA; this offers a means of locating and iden
fying genes@12#. There are other short-range correlatio
also @13,14# corresponding to structural constraints on t
DNA double helix.

Segmentation analysis is a powerful means of examin
the large-scale organization of DNA sequences@4–6,15–18#.
The most commonly used procedure@4–6# is based on maxi-
mization of the Jensen-Shannon~JS! divergencethrough
which a given DNA string is recursively separated into co
postionallly homogeneous segments called domains~or
patches!. This results in a coarse-grained description of
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DNA string as a sequence of distinct domains. The criter
for continuing the segmentation process is based on sta
cal significance~this is equivalent to hypothesis testing! @4,5#
or, alternatively, within a model selection framework bas
on the Bayesian information criterion@7#. This criterion can
be extended and used to detect isochores@7#, CpG islands,
origin and terminus of replication in bacterial genomes, co
plex repeats in telomere sequences, etc.@19#. Segmentation
using a 12-symbol alphabet derived from codon usage
been shown recently to delineate the border between co
and noncoding regions in a DNA sequence@6#.

In the present work, we analyze the segmentation str
ture of genomic DNA for a class of genomes ranging
~evolutionary! complexity from bacteria to human. Our mo
tivation is to understand the complexity of genome organi
tion in terms of the domains obtained. We further aim
correlate the domain picture with evolutionary biologic
processes.

By construction a given domain is heterogenous with
spect to its neighbors, but it may nevertheless be comp
tionally similar to other domains. Based on this premise,
attempt to draw a larger domain picture by obtaining ‘‘d
main sets.’’ These consist of a set of domains which
homogeneous when concatenated. A domain set may thu
interpreted as a larger homogeneous sequence, part
which are scattered nonuniformly in a genomic sequen
The number of domain sets constructed thus is found to
much fewer than the domains obtained upon segmenta
@4–7#. We propose here an optimal procedure, starting fr
the domains found from one of the above segmenta
methods, and building up a domain set by adding togethe
its components. We then use standard complexity meas
to show that this gives a superior model in as much as
complexity is reduced.

This paper is organized as follows. In the following se
tion, we briefly review the segmentation methods based
the JS divergence. Section III contains our main results.
first segment a given genome to reveal the primary dom
structure that derives from the JS divergence. We then s
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how the domain sets are constructed, and analyze the a
dant decrease in complexity. In Sec. IV, we speculate
such domain organization occurred during genomic evo
tion when there was lateral gene and/or DNA transfer
tween species. To that end, we present the results of num
cal experiments based on a host-parasite model, where
artificially insert fragments of one genome inside anoth
and demonstrate that this process can be uncovered via
mentation. Section V concludes the paper with a summ
and discussion of our results.

II. SEGMENTATION METHODS

In this section we briefly review the segmentation me
odology that is used here in order to fragment a genome
homogeneous domains. Consider a sequenceS as a concat-
enation of two subsequencesS (1) and S (2). The Jensen-
Shannon divergence@20# of the subsequences is

D~F (1),F (2)!5H~p (1)F (1)1p (2)F (2)!

2@p (1)H~F (1)!1p (2)H~F (2)!#, ~1!

whereF ( i )5$ f 1
( i ) , f 2

( i ) , . . . ,f k
( i )%,i 51,2 are the relative fre-

quency vectors, andp (1) andp (2) their weights. In Eq.~1!,
H is the Shannon entropy~in unit of nats!

H~F!52(
i 51

k

f i lnf i , ~2!

although, as can be appreciated, a variety of other funct
on the f i ’s can also be used as a criterion for estimating
divergence of two sequences.

The algorithm proposed by Bernaola-Galva´n et al. @4,5#
proceeds as follows. A sequence is segmented in two
mains such that the JS divergenceD is maximum over all
possible partitions. Each resulting domain is then further s
mented recursively.

The main issue with regard to continual segmentation
that unless the significance of a given segmentation ste
properly assessed, it is possible to arrive at segments w
have no great significance. This question is also related
second issue, namely, when one should stop the recur
Since we consider finite DNA sequences, it is again poss
to keep segmenting until the segments are very short. B
these questions can be answered through one of two pos
approaches which we now describe.

A. Hypothesis testing framework

The statistical significance of the segmentation is de
mined by computing the maximum value of the JS div
gence for the two potential subsegments,Dmax, and estimat-
ing the probability of getting this value or less in a rando
sequence. This defines the significance levels(x) as

s~x!5Prob$Dmax<x%. ~3!

The probability distribution ofDmax has an analytic approxi
mation @5,6#, and
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s~x!5@Fn~b•2N ln 2•x!#Ne f f, ~4!

whereFn is the x2 distribution function withn degrees of
freedom,N is the sequence length,b is a scale factor which
is essentially independent ofN and k and for eachk, Ne f f
5a ln N1b. The values ofb and Ne f f ~and thus the con-
stantsa andb) are found from Monte Carlo simulations b
fitting the empirical distributions to the above expressi
@5,6#.

Within the hypothesis testing framework, then, the se
mentation is allowed if and only ifs(x) is greater than a
preset level of statistical significance. It is possible to s
ment a given sequence initially at a~usually very high! sig-
nificance level, and these domains are further segmente
lower levels of significance to detect the inner structure
other patterns@15#.

B. Model selection framework

A different criterion can be evolved for stopping the r
cursive segmentation within the so-called model select
framework @7#. This is based on the Bayesian informatio
criterion @21–23#, denotedB below,

B522 ln~ L̂ !1 ln~N!K1O~1!1OS 1

AN
D 1OS 1

ND , ~5!

where L̂ is the maximum likelihood of the model,N is the
sample size andK is the number of parameters in the mod

A potential segmentation based on the JS divergenceD is
deemed acceptable ifB is reduced after segmentation. Fro
the above equation, this condition is@7#

2ND.~K22K1!ln~N!, ~6!

whereK1 and K2 are the number of free parameters of t
models before and after the segmentation. This is the lo
bound of the significance level; an upper bound can be pr
by using a measure ofsegmentation strength@7#

s5
2ND2~K22K1!ln~N!

~K22K1!ln~N!
. ~7!

Equation~6! is equivalent to the conditions.0.

III. APPLICATIONS AND ANALYSIS

In the present work we consider the DNA sequences
strings in a four-letter alphabet (A,T,C,G). In the model
selection framework discussed above, therefore, the rele
parameters areK153 ~since only 3 of the 4 nucleotides ar
independent! andK257 ~the three free parameters from ea
of the two subsegments, and in addition, the partition po
which is another independent parameter! @7#. The importance
of this segmentation approach in detecting some of the st
tural and functional units in DNA sequences has been d
onstrated recently@19#. The results that follow have bee
obtained by the application of this approach.
3-2
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A. Labeling the domains

The complete genome of a bacteriumUreaplasma ure-
alyticum~751719 bp! and a contig of human chromosome 2
~gi u10879979u ref uNT_011521.1u, 767357 bp! were seg-
mented at the lower bound of the stopping criterion, nam
Eq. ~6!. The number of segments obtained by this proced
is 86 for the bacterium and 248 for human chromosome
contig. Labeling each of these segments by a unique sym
gives a coarse-grained view of the entire sequence, saS1
•S2•••SN .

While each segmentSk is heterogeneous with respect
its neighbors,Sk61, it need not be compositionally distinc
from a non-neighboring segmentSj . Therefore, we now ex-
amine theinter seheterogeneity of all segments with respe
to each other. SegmentsSk and Sj are concatenated, and
this ‘‘supersegment’’ cannot be segmented by the same
terion, then bothSk and Sj are assigned the same doma
symbol. This is done recursively and exhaustively, so t
within the model selection framework of segmentation,
domains that cannot be distinguished from one another
assigned the same symbol. This gives a reduced and fu
coarse-grained view of the domain structure of a DNA
quence.

To ensure that the above procedure is as complete
self-consistent as possible, we examine each segmentSk by
concatenating it withSj andall preceding distinct segment
that share the same domain symbol asSj , and examine
whether this larger sequence can be segmented. Explicit
segmentsSi and Sj have the same symbol~following the
procedure given above! we examine the supersegmentSi
•Sj•Sk to determine whether segmentSk should share the
same domain symbol or not. It is further required to consi
all possible subsets (Si•Sk , Sj•Sk , etc.! to ensure that all
segments that are deemed to share a given domain symb
indeed belong to one class, namely, that such superdom
do not undergo further segmentation.

Following the above, the 86 domains obtained from
segmentation ofU. urealyticumare reduced to a total of 1
distinct domain types:

S1 S2 S3 S4 S5 S3 S1 S2 S1 S6 S4 S1

S6 S7 S2 S1 S6 S4 S8 S9 S4 S9 S10 S4

S9 S4 S11 S12 S6 S4 S10 S6 S10 S6 S11 S6

S7 S6 S11 S7 S3 S11 S3 S10 S6 S3 S9 S11

S10 S4 S11 S10 S13 S4 S13 S9 S11 S4 S6 S4

S11 S4 S14 S6 S8 S6 S14 S4 S6 S15 S1 S9

S4 S16 S9 S17 S15 S6 S17 S7 S17 S1 S17 S8

S16 S14.

The 248 segments of human chromosome 22 also und
simplification, to a total of 53 distinct domain types:
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S1 S2 S3 S4 S5 S4 S3 S6 S4 S6 S7 S4

S8 S4 S9 S10 S6 S4 S7 S1 S4 S7 S6 S4

S7 S11 S4 S12 S13 S4 S14 S12 S4 S15 S16 S14

S6 S9 S10 S17 S16 S10 S16 S6 S12 S18 S12 S10

S3 S1 S3 S1 S10 S9 S6 S3 S12 S16 S3 S12

S14 S1 S7 S6 S12 S7 S1 S6 S19 S6 S20 S17

S7 S21 S7 S22 S21 S22 S23 S7 S23 S24 S17 S21

S7 S21 S1 S21 S7 S21 S7 S16 S25 S1 S16 S15

S26 S8 S15 S8 S21 S8 S21 S27 S16 S12 S1 S28

S21 S28 S21 S12 S21 S16 S12 S16 S12 S28 S16 S19

S17 S27 S28 S16 S20 S21 S29 S25 S30 S25 S31 S25

S28 S8 S25 S29 S32 S3 S25 S31 S33 S8 S31 S34

S31 S29 S30 S31 S35 S36 S21 S36 S37 S36 S2 S36

S9 S1 S9 S13 S38 S13 S39 S29 S34 S37 S2 S29

S40 S41 S31 S37 S31 S13 S35 S42 S9 S5 S9 S42

S7 S41 S1 S43 S44 S45 S46 S42 S45 S47 S45 S44

S32 S44 S45 S44 S48 S43 S25 S45 S11 S49 S13 S49

S11 S49 S47 S50 S47 S13 S26 S13 S44 S13 S45 S13

S8 S9 S45 S50 S9 S51 S5 S52 S32 S51 S5 S51

S45 S9 S21 S2 S9 S21 S9 S39 S9 S43 S13 S53

S39 S13 S43 S13 S49 S13 S47 S13.

This gives a maximally coarse-grained view of the DN
squence, in terms of ‘‘domain sets’’: these are the eleme
of a given domain type which may be scattered over
entire genome. Examples above are domains likeS1 in bac-
terium orS13 in human which are widely dispersed~these are
underlined for visual clarity above!, suggesting that thes
fragments possibly had a common origin, or that they w
inserted at the same time during evolution. Expansi
modification @24,25# and insertion-deletion processes@26#
are thought to play a major role in evolution: the form
ensures duplication accompanied by point mutations in
nomes and the latter results in insertion of a part of chrom
some inside a nucleotide sequence or deletion of base p
from a nucleotide sequence. An initial homogeneous
quence may thus become heterogeneous by inserti
deletions that consistently go on with the evolution. Ins
tions may cause the pieces of a homogeneous sequen
spread.
3-3
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B. Insertion-deletion process and heterogeneity

The insertion-deletion process@26# has played an impor
tant role in increasing the complexity of genomes. Motiva
by the simplification of domain description as above,
perform the following numerical experiment in order to e
amine the increase in complexity by such processes. F
ments of theU. urealyticum bacterial sequence of tota
length 80 Kbp are inserted atN random positions
in the human chromosome 22 cont
(giu10879979ure f uNT_011521.1u). The heterogeneity will
naturally increase because of such insertions.

Prior to the insertion of bacterial fragments, the total nu
ber of domains in the human chromosome 22 contig is 2
after inserting the fragments at random positions, in a typ
realization, the number of segments obtained is 375.
results of such experiments can be quantified through
sequence compositional complexity@18,27#, denotedS,

S5H~S!2(
i 51

n
ni

N
H~Si !5(

i 51

n
ni

N
@H~S!2H~Si !#, ~8!

whereSdenotes the whole sequence of lengthN andSi is the
i th domain of lengthni . This measure, which is independe
of the length of sequence quantifies the difference or dis
sion among the compositions of the domains. The higher
S, the more heterogeneous the DNA sequence.

When fragments of very different composition are i
serted into a given DNA sequence, the complexity will ne
essarily increase. We computeDS5S82S for domains ob-
tained after and before the insertion for the example as ab
and also for a number of genomes. In all casesDS.0: the
compositional complexity increases after insertion. If de
tion is also introduced, say by removing a fragment of ra
dom length from a random position~the range of lengths
being deleted is kept same as that of the ‘inserts’! in general
DS increases further.

C. Measuring the complexity

We quantify the simplication of domain description of th
two representative genomes by considering a comple
measure within the model selection framework, namely,
Bayesian information criterion (B). Within standard statisti-
cal analyisis, one model is superior in comparison with
other if it has a lowerB. For the case ofU. urealyticum,
where the segmentation procedure gives 86 domains,

B522 ln~ L̂ !1343 ln~N!, ~9!

whereK5343 parameters correspond to 8633 base compo-
sitions and 85 borders. These are reorganized into 17 dom
sets, and thus

B8522 ln~L 8̂!1136 ln~N! ~10!

(13651733185). The maximum likelihood can be ex
pressed as
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pa
Na , ~11!

where $pa% and $Na% are the base composition parame
and the base counts, respectively, corresponding to alph
$a5A,T,G,C% of a sequence.DB5B82B depends on the
relative contribution of both terms; typicallyL.L8 since the
first segmentation uses a more accurate measurement of
composition. The reduction in this measure comes from
second term through the drastic reduction in the numbe
domains which reduces the model complexity.

For U. urealyticum and human, DB521709 and
24884, respectively, which shows that the model repres
tative of the domain set is better than the original one~we
use the lower bound, i.e.,DB,0 for determining the statis
tical significance@7#!. As another example, we foundDB for
Thermoplasma acidophilum~archaeabacteria, 1564906 b!
and another contig of human chromosome 22~gi
u10880022u ref uNT_011522.1u, 1528072 bp) to be22808
and 210420, respectively. We repeated this procedure
different available genomes and found the above results t
consistent. Note that the simplication can also be quanti
in terms ofS and we observeDS,0 in all cases.

IV. In silico EXPERIMENTS ON DOMAIN INSERTION: A
HOST-PARASITE PERSPECTIVE

It is tempting to speculate that the heterogeneity tha
uncovered by the segmentation procedures discussed a
is a reflection of the evolutionary history of the given s
quence, and in particular, that the different domains a
from insertion processes acting at different evolutiona
times. For instance, it is well known that the human geno
contains a small fraction of bacterial genome which ha
most likely arisen from processes such as viral insertion
lateral gene transfer.

To what extent can the segmentation process determ
the exact pattern of insertions? Here we describe so
simple experiments that are designed to explore this qu
tion. Starting with a homogeneous fragment of human DN
we insert fragments from~a homogeneous segment of! bac-
terial genomes; this increases the heterogeneity. We then
ply the segmentation algorithm followed by the labeling pr
cedure and compare the results with the~known! control.

Experiments were done on a homogeneous domain
from the human genome, of total length 100139 bp. Into th
fragments from a homogeneous segment of length 17584
from the genome ofU. urealyticumwere inserted. In a rep
resentative case, we took three fragments~of lengths 5000,
7000, and 5584 bp, respectively! and inserted them at loca
tions 10 000, 50 000, and 92 000 in the human genome
main.

Upon segmentation, all seven segments were identifi
with the boundaries between the bacterial and human D
sequences determined as follows: 9984~10 000!, 15 000
~15 000!, 49 751, 50 060~50 000!, 56 968 ~57 000!, 91 636
~92 000!, and 97 575~97 584! ~the exact values are given i
brackets!. There is thus one false positive, but otherwise
the boundaries are determined to fairly high precision. T
3-4
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FIG. 1. ~a! Representation of a DNA sequence obtained by random insertion of fragments of two bacterial sequencesT. acidophilum~T!
andU. urealyticum~U! into a human sequence~H! ~see text!. ~b! The domain structure as uncovered by the procedure of segmentatio
labeling~as described in the text!. In both~a! and~b! the ordinate scale is arbitrary. The host level~H! is the baseline, and the different inser
~T andU!, whose locations are given on the abscissa, are shown at different heights for clarity.
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domain sets can also be reconstructed, and the seven
ments,S1S2S1S2S1S2S1 conform to two sets.

Shown in Fig. 1~a! is the insertion process for a cas
where fragments from two bacterial genomes,Ureaplasma
urealyticumand Thermoplasma acidophilumare randomly
inserted in the human genome segment. Carrying out
mentation at varying strengths gives a greater number o
segments compared to the correct value of 13. Withs50.2,
one gets 18 segments@see Fig. 1~b!# which is the best recon
struction possible within the present framework. On obta
ing domain sets, we find that up to about 85% of human
U. urealyticumgenomes are properly identified, the erro
affecting the reconstruction ofT. acidophilumwhich is only
67% accurate.

To summarize, our results from several numerical exp
ments show that the reconstruction of the fragmentation p
cess can be done to high accuracy so long as the inse
fragments are sufficiently long and widely separated.
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V. DISCUSSION AND SUMMARY

Segmentation offers a novel view of the composition
heterogeneity of a DNA sequence. In the present work
have applied the segmentation analysis to genomic
quences from several organisms.

Our main focus has been on understanding the organ
tion and to this end we have applied a number of differ
analytical tools. Our main analysis has been directed towa
obtaining a coarse-grained representation of DNA as a st
of minimal domain labels. Complexity measures indica
that the reduced model in terms of domain sets is superio
a model where each domain is treated as independent.

Insofar as the different domains are considered, our m
hypothesis is that these arise when fragments of one~possi-
bly homogenous! DNA sequence get randomly inserted in
another~also possibly homogenous! sequence. A controlled
set of ~numerical! experiments give support to this hypoth
3-5
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esis: we are able to identify domain boundaries to high
curacy so long as inserted domains are not very short.
accuracy could be further increased by improving the s
mentation process, for example, using 1 to 3 segmenta
rather than the binary or 1 to 2 segmentation used here
nary segmentation is only one of several possible segme
tion procedures~see Ref.@17#!.

A consequence of this analysis, and one that we are
rently exploring, is that different domains~or domain sets! in
one genome can have arisen via insertion from another
.
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ganism. Homology analysis~say, by the use of standard too
such as BLAST or FASTA! can help to unravel the origins o
the domains. Thus segmentation analysis can possibly
in reconstructing the evolutionary history of the genome.
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